首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6222篇
  免费   284篇
  国内免费   270篇
测绘学   23篇
大气科学   63篇
地球物理   1455篇
地质学   4255篇
海洋学   360篇
天文学   105篇
综合类   14篇
自然地理   501篇
  2023年   27篇
  2022年   34篇
  2021年   60篇
  2020年   105篇
  2019年   114篇
  2018年   116篇
  2017年   316篇
  2016年   309篇
  2015年   270篇
  2014年   327篇
  2013年   434篇
  2012年   197篇
  2011年   344篇
  2010年   214篇
  2009年   298篇
  2008年   253篇
  2007年   264篇
  2006年   269篇
  2005年   214篇
  2004年   187篇
  2003年   219篇
  2002年   210篇
  2001年   172篇
  2000年   156篇
  1999年   171篇
  1998年   90篇
  1997年   80篇
  1996年   71篇
  1995年   83篇
  1994年   85篇
  1993年   85篇
  1992年   70篇
  1991年   88篇
  1990年   62篇
  1989年   50篇
  1988年   45篇
  1987年   37篇
  1986年   34篇
  1985年   44篇
  1984年   45篇
  1983年   40篇
  1982年   27篇
  1981年   40篇
  1980年   48篇
  1979年   34篇
  1978年   41篇
  1977年   33篇
  1976年   34篇
  1975年   34篇
  1973年   48篇
排序方式: 共有6776条查询结果,搜索用时 15 毫秒
1.
Natural Hazards - Indo-Gangetic plains are seismically most vulnerable due to the proximity of adjacent great Himalayan earthquakes and thick alluvium deposits of the Ganga River system. As the...  相似文献   
2.
Mantle-derived carbonatites provide a unique window in the understanding of mantle characteristics and dynamics, as well as insight into the assembly and breakup of supercontinents. As a petrological indicator of extensional tectonic regimes, Archean/Proterozoic carbonatites provide important constraints on the timing of the breakup of ancient supercontinents. The majority of the carbonatites reported worldwide are Phanerozoic, in part because of the difficulty in recognizing Archean/Proterozoic carbonatites, which are characterized by strong foliation and recrystallization, and share broad petrologic similarities with metamorphosed sedimentary lithologies. Here, we report the recognition of a ~1.85 Ga carbonatite in Chaihulanzi area of Chifeng in north China based on systematic geological, petrological, geochemical, and baddeleyite U-Pb geochronological results. The carbonatite occurs as dikes or sills emplaced in Archean metasedimentary rocks and underwent intense deformation. Petrological and SEM/EDS results show that calcite and dolomite are the dominant carbonate minerals along with minor and varied amounts of Mg-rich mafic minerals, including forsterite (with Fo > 98), phlogopite, diopside, and an accessory amount of apatite, baddeleyite, spinel, monazite, and ilmenite. The relatively high silica content together with the non-arc and OIB-like trace element signatures of the carbonatite indicates a hot mantle plume as the likely magma source. The depleted Nd isotopic signatures suggest that plume upwelling might be triggered by the accumulation of recycled crust in the deep mantle. As a part of the global-scale Columbia supercontinent, the Proterozoic tectonic evolution of the North China Craton (NCC) provides important insights into the geodynamics governing amalgamation and fragmentation of the supercontinent. The Paleo-Mesoproterozoic boundary is the key point of tectonic transition from compressional to extensional settings in the NCC. The newly identified ~1.85 Ga carbonatite provides a direct link between the long-lasting supercontinental breakup and plume activity, which might be sourced from the “slab graveyard,” continental crustal slabs subducted into asthenosphere, beneath the supercontinent. The carbonatite provides a precise constraint of the initiation of the continental breakup at ~1.85 Ga.  相似文献   
3.
Doklady Earth Sciences - U–Pb dating of zircons from granitoids located within the Rassokha terrane show a Silurian age of their formation. Younger dates from one of the samples are related...  相似文献   
4.
We present a map that correlates tectonic units between Alps and western Turkey accompanied by a text providing access to literature data, explaining the concepts used for defining the mapped tectonic units, and first-order paleogeographic inferences. Along-strike similarities and differences of the Alpine-Eastern Mediterranean orogenic system are discussed. The map allows (1) for superimposing additional information, such as e.g., post-tectonic sedimentary basins, manifestations of magmatic activity, onto a coherent tectonic framework and (2) for outlining the major features of the Alpine-Eastern Mediterranean orogen. Dinarides-Hellenides, Anatolides and Taurides are orogens of opposite subduction polarity and direction of major transport with respect to Alps and Carpathians, and polarity switches across the Mid-Hungarian fault zone. The Dinarides-Hellenides-Taurides (and Apennines) consist of nappes detached from the Greater Adriatic continental margin during Cretaceous and Cenozoic orogeny. Internal units form composite nappes that passively carry ophiolites obducted in the latest Jurassic–earliest Cretaceous or during the Late Cretaceous on top of the Greater Adriatic margin successions. The ophiolites on top of composite nappes do not represent oceanic sutures zones, but root in the suture zones of Neotethys that formed after obduction. Suturing between Greater Adria and the northern and eastern Neotethys margin occupied by the Tisza and Dacia mega-units and the Pontides occurred in the latest Cretaceous along the Sava-İzmir-Ankara-Erzincan suture zones. The Rhodopian orogen is interpreted as a deep-crustal nappe stack formed in tandem with the Carpatho-Balkanides fold-thrust belt, now exposed in a giant core complex exhumed in late Eocene to Miocene times from below the Carpatho-Balkan orogen and the Circum-Rhodope unit. Its tectonic position is similar to that of the Sakarya unit of the Pontides. We infer that the Rhodope nappe stack formed due to north-directed thrusting. Both Rhodopes and Pontides are suspected to preserve the westernmost relics of the suture zone of Paleotethys.  相似文献   
5.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
6.
ABSTRACT

We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea (SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry combined with seismic constraints and interpretation from geodynamic modelling. We first calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived crustal thickness models correlate positively with seismically determined crustal thickness values. Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n (~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the northern flank. Computational geodynamic modelling yielded the following interpretations: (1) Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank than the southern conjugate, which is inconsistent with the observed systematically thicker crust on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less depleted mantle sources on the northern flank could produce large enough anomalies to explain the observed N-S asymmetries.  相似文献   
7.
We developed a seismic geomorphology-based procedure to enhance traditional trajectory analysis with the ability to visualize and quantify lateral variability along carbonate prograding-margin types (ramps and rimmed shelves) in 3D and 4D. This quantitative approach analysed the shelf break geometric evolution of the Oligo-Miocene carbonate clinoform system in the Browse Basin and delineated the feedback between antecedent topography and carbonate system response as controlling factor on shelf break rugosity. Our geometrical analysis identified a systematic shift in the large-scale average shelf break strike direction over a transect of 10 km from 62° to 55° in the Oligo-Miocene interval of the Browse Basin, which is likely controlled by far-field allogenic forcing from the Timor Trough collision zone. Plotting of 3D shelf break trajectories represents a convenient way to visualize the lateral variability in shelf break evolution. Shelf break trajectories that indicate contemporaneous along-strike progradation and retrogradation correlate with phases of autogenic slope system re-organization and may be a proxy for morphological stability of the shelf break. Shelf break rugosity and shelf break trajectory rugosity are not inherited parameters and antecedent topography does not dictate long-term differential movement of the shelf margin through successive depositional sequences. The autogenic carbonate system response to antecedent topography smooths high-rugosity areas by filling accommodation and maintains a relatively constant shelf break rugosity of ~150 m. Color-coding of the vertical component in the shelf break trajectory captures the creation and filling of accommodation, and highlights areas of the transect that are likely to yield inconsistent 2D sequence stratigraphic interpretations.  相似文献   
8.
Late Paleozoic sedimentary strata outcrop extensively in central Inner Mongolia, and are a key to understanding the tectonic evolution of the southeastern Central Orogenic Belt. A combined analysis of petrography, whole-rock major and trace element, and Nd isotope is carried out on representative sandstones from the Late Paleozoic sedimentary strata (420–270 Ma). The sandstones are mainly wackes and litharenites in lithology, with low SiO2/Al2O3 of 2.85–9.47 (averagely 5.22) and poor textural and compositional maturities, implying short sediment transportation between the depositional basins and provenances. The trace element compositions are generally comparable to that of the average upper continent crust (UCC), with negatively-sloping chondrite-normalized rare earth element distribution patterns ((La/Yb)N = 3.43–11; averagely 6.94) and flat UCC-normalized trace element distribution patterns. The Nd isotopic compositions show great variation (ԐNd(t) = −5.01 to 5.35) with depositional time of the sandstones, and coincide well with the arc magmatic phases in central Inner Mongolia. The geochemical signatures of the sandstones indicate that the dominant provenances are intermediate to felsic arc magmatic rocks that have ages approximating the deposition, although old, recycled sediments may have made a minor contribution. An active continental arc setting during the Late Paleozoic in central Inner Mongolia, controlled by the northward subduction of the Paleo-Asian oceanic slab, was the most likely depositional tectonic setting of the sandstones. This active continental arc setting continued to at least 270 Ma, implying that the final closure of the Paleo-Asian Ocean along the Solonker suture zone most likely occurred sometime during the Late Permian to Early Triassic. The northward subduction of the Paleo-Asian Ocean is likely of West Pacific-style, in which the present-day Baolidao arc has a close genetic link with the South Mongolian microcontinent and, likely, the former originally formed as the arc margin of the latter.  相似文献   
9.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
Understanding the spatio-temporal characteristics of water storage changes is crucial for Ethiopia, a country that is facing a range of challenges in water management caused by anthropogenic impacts as well as climate variability. In addition to this, the scarcity of in situ measurements of soil moisture and groundwater, combined with intrinsic “scale limitations” of traditional methods used in hydrological characterization are further limiting the ability to assess water resource distribution in the region. The primary objective of this study is therefore to apply remotely sensed and model data over Ethiopia in order to (i) test the performance of models and remotely sensed data in modeling water resources distribution in un-gauged arid regions of Ethiopia, (ii) analyze the inter-annual and seasonal variability as well as changes in total water storage (TWS) over Ethiopia, (iii) understand the relationship between TWS changes, rainfall, and soil moisture anomalies over the study region, and (iv) identify the relationship between the characteristics of aquifers and TWS changes. The data used in this study includes; monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) mission, rainfall data from the Tropical Rainfall Measuring Mission (TRMM), and soil moisture from the Global Land Data Assimilation System (GLDAS) model. Our investigation covers a period of 8 years from 2003 to 2011. The results of the study show that the western part and the north-eastern lowlands of Ethiopia experienced decrease in TWS water between 2003–2011, whereas all the other regions gained water during the study period. The impact of rainfall seasonality was also seen in the TWS changes. Applying the statistical method of Principal Component Analysis (PCA) to TWS, soil moisture and rainfall variations indentified the dominant annual water variability in the western, north-western, northern, and central regions, and the dominant seasonal variability in the western, north-western, and the eastern regions. A correlation analysis between TWS and rainfall indicated a minimum time lag of zero to a maximum of six months, whereas no lag is noticeable between soil moisture anomalies and TWS changes. The delay response and correlation coefficient between rainfall and TWS appears to be related to recharge mechanisms, revealing that most regions of Ethiopia receive indirect recharge. Our results also show that the magnitude of TWS changes is higher in the western region and lower in the north-eastern region, and that the elevation influences soil moisture as well as TWS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号